Refine Your Search

Topic

Author

Search Results

Technical Paper

Development and Validation of a Predictive Model for DEF Injection and Urea Decomposition in Mobile SCR DeNOx Systems

2010-04-12
2010-01-0889
Selective catalytic reduction (SCR) of oxides of nitrogen with ammonia gas is a key technology that is being favored to meet stringent NOx emission standards across the world. Typically, in this technology, a liquid mixture of urea and water - known as Diesel Exhaust Fluid (DEF) - is injected into the hot exhaust gases leading to atomization and subsequent spray processes. The water content vaporizes, while the urea content undergoes thermolysis and forms ammonia and isocyanic acid, that can form additional ammonia through hydrolysis. Due to the increasing interest in SCR technology, it is desirable to have capabilities to model these processes with reasonable accuracy to both improve the understanding of processes important to the aftertreatment and to aid in system optimization. In the present study, a multi-dimensional model is developed to simulate DEF spray processes and the conversion of urea to ammonia. The model is then implemented into a commercial CFD code.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Development and Applications of an Analytical Tool for Piston Ring Design

2003-10-27
2003-01-3112
A comprehensive and robust analytical tool was developed to study three-dimensional (3D) ring-bore and ring-groove interactions for piston rings with either symmetric or asymmetric cross-section. The structural response of the ring is modeled with 3D finite element beam method, and the interfaces between the ring and the bore as well as between the ring and the groove are modeled with a simple asperity contact model. Given the ring free shape and the geometry of the cross-section, this analytical tool can be used to evaluate the ring-bore and ring-groove conformability as well as ring twist angle distribution under different constraints. Conversely, this tool can be used to calculate the free shape to provide the desired ring-bore contact pressure distribution for specific applications.
Technical Paper

Crashworthiness of Thin Ultra-light Stainless Steel Sandwich Sheets: From the Design of Core Materials to Structural Applications

2004-03-08
2004-01-0886
Thin sandwich sheets hold a promise for widespread use in automotive industry due to their good crash and formability properties. In this paper, thin stainless steel sandwich sheets with low-density core materials are investigated with regard to their performance in crashworthiness applications. The total thickness of the sandwich materials is about 1.2mm: 0.2mm thick facings and a 0.8mm thick sandwich core. Throughout the crushing of prismatic sandwich profiles, the sandwich facings are bent and stretched while the sandwich core is crushed under shear loading. Thus, a high shear crushing strength of the sandwich core material is beneficial for the overall energy absorption of the sandwich profile. It is shown theoretically that the weight specific shear crushing strength of hexagonal metallic honeycombs is higher than the one of fiber cores - irrespective of their relative density or microstructural geometry.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

2016-04-05
2016-01-1043
The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

Introducing a New Piston Skirt Profile to Reduce Engine Friction

2016-04-05
2016-01-1046
The piston’s skirt shape is a key design parameter since it critically influences lateral displacement, tilting movement, oil transport and consequently engine performances. This study proposes an alternative skirt profile that aims to reduce frictional losses between the piston and cylinder liner. Qualitatively, the proposed profile, aims to reduce solid-to-solid contact friction by increasing the total hydrodynamic forces generated on the skirt to balance side forces, and to prevent both sides of the skirt to interact with the liner simultaneously. The new skirt’s profile has been first studied and optimized using a piston secondary motion model and then prototyped and tested on a floating liner test bench, showing a 12% average reduction in total piston FMEP.
Technical Paper

Development of a High Speed Laser Induced Fluorescence (HSLIF) System in a Single Cylinder Engine for Oil Transport Studies

2016-04-05
2016-01-0642
Understanding oil transport mechanisms is critical to developing better tools for oil consumption and piston skirt lubrication [1]. Our existing Two-Dimensional Laser Induced Fluorescence (2DLIF) system with an acquisition rate of 1 frame every one or two cycles was proven to be effective to display oil accumulation patterns and their evolution over many cycles in the piston ring pack system [2,3,4]. Yet, the existing system is unable to resolve instantaneous oil flow patterns in the piston-liner interface. In this work, a high-speed LIF system was developed. After a number of iterations the finalized high speed LIF system includes a 23 W, 100 kHz, 532 nm laser and a high speed camera capable of 100,000 FPS at 384 × 264 pixel resolution. After each component was selected, optimization of the quality of images taken from the system began.
Technical Paper

Thermal and Fluid Dynamic Considerations in Aftertreatment System Design for SCR Solid Deposit Mitigation

2012-04-16
2012-01-1287
Selective Catalytic Reduction (SCR) of oxides of nitrogen (NOx) with ammonia gas has established itself as an effective diesel aftertreatment technology to meet stringent emission standards enforced by worldwide regulatory bodies. Typically, in this technology, aqueous urea solution of eutectic composition - known as Diesel Exhaust Fluid (DEF) - is injected into hot exhaust gases leading to a series of thermal, fluid dynamic and reactive processes that eventually produces the ammonia necessary for NOx reduction reactions within monolithic catalytic substrates. Incomplete decomposition of the injected urea can lead to formation of solid deposits that adversely affect system performance by increasing the engine back pressure, reducing de-NOx efficiency, and lowering the overall fuel economy.
Technical Paper

The Study of Friction between Piston Ring and Different Cylinder Liners using Floating Liner Engine - Part 1

2012-04-16
2012-01-1334
The objective of this work was to develop an experimental system to support development and validation of a model for the lubrication of two-piece Twin-Land-Oil-Control-Rings (hereafter mentioned as TLOCR). To do so, a floating liner engine was modified by opening the head and crankcase. Additionally, only TLOCR was installed together with a piston that has 100 micron cold clearance to minimize the contribution of the skirt to total friction. Friction traces, FMEP trend, and repeatability have been examined to guarantee the reliability of the experiment results. Then, engine speed, liner temperature, ring tension, and land widths were changed in a wide range to ensure all three lubrication regimes were covered in the experiments.
Technical Paper

Modeling the Evolution of Fuel and Lubricant Interactions on the Liner in Internal Combustion Engines

2018-04-03
2018-01-0279
In internal combustion engines, a portion of liquid fuel spray may directly land on the liner and mix with oil (lubricant), forming a fuel-oil film (~10μm) that is much thicker than the original oil film (~0.1μm). When the piston retracts in the compression stroke, the fuel-oil mixture may have not been fully vaporized and can be scraped by the top ring into the 1st land crevice and eventually enter the combustion chamber in the format of droplets. Studies have shown that this mechanism is possibly a leading cause for low-speed pre-ignition (LSPI) as the droplets contain oil that has a much lower self-ignition temperature than pure fuel. In this interest, this work aims to study the oil-fuel interactions on the liner during an engine cycle, addressing molecular diffusion (in the liquid film) and vaporization (at the liquid-gas interface) to quantify the amount of fuel and oil that are subject to scraping by the top ring, thereby exploring their implications on LSPI and friction.
Technical Paper

Increased Power Density via Variable Compression/Displacement And Turbocharging Using The Alvar-Cycle Engine

1998-02-23
981027
This paper presents the analysis and design of a variable compression-ratio and displacement engine concept - the Alvar Cycle using a four-stroke engine-performance simulation. The Alvar-Cycle engine uses secondary pistons which reciprocate in auxiliary chambers housed in the cylinder head, at adjustable phase-angle differences from the primary pistons. The phase difference provides both the variable total engine displacement and compression ratio. Results indicate that the Alvar engine can operate at higher power density via a combination of higher intake boost and lower compression ratio to avoid knock at high loads, and capture the better thermal efficiency at higher compression ratios at part loads.
Technical Paper

M.I.T. Stirling-Cycle Heat Transfer Apparatus

1992-08-03
929465
The paper describes the design and construction of a two cylinder apparatus to measure heat transfer under conditions of oscillating pressure and oscillating flow such as found in Stirling-cycle machines. The apparatus consists of two large single stage air compressors joined by a rigid drive shaft between the two crank shafts. The compressors are 27.94 cm (11-in) diameter by 22.86 cm (9-in) stroke. The apparatus is powered by a 25 HP variable speed DC motor. Belts and a jack shaft provide wide speed ranges. The test section, which is connected between the compressor cylinders, is a 44.45 mm (1.75-in) diameter tube and about 254 cm (100-in) long. The test section is configured for measuring wall heat flux, and gas pressure as a function of time. An LDV system is being installed for measurement of gas velocity as a function of time and position. A fast response micro thermocouple measures gas temperature as a function of time and position.
Technical Paper

The Possible Role of Surface Tension in the Reduction of Top Ring Drag

1993-10-01
932781
In a small (4.5 KW) diesel engine, Laser Induced Fluorescence (LIF) has been used to produce detailed oil film thickness measurements around the top piston ring and liner near midstroke. The flow is “Newtonian” under the ring in the sense that using a high shear rate viscosity at the liner temperature is appropriate. The geometry corresponds everywhere to that required for a valid Reynolds approximation. Classical boundary conditions are not applicable for the high strain rates (106-107 s-1) under the piston rings of typical modem engines. A new boundary condition is developed to explain the data. The exit surface shear stress is shown to scale with a Marangoni-like (surface tension gradient) effect. By increasing surface tension, it is possible to make substantial reductions in friction for a fixed high shear viscosity.
Technical Paper

A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication

1994-03-01
940696
This paper presents a numerical model of the rotational and lateral dynamics of the piston (secondary motion) and piston slap in mixed lubrication. Piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle. The model considers piston skirt surface waviness, roughness, skirt profile, thermal and mechanical deformations. The model considers partially-flooded skirt and calculates the pressure distributions and friction in the piston skirt region for both hydrodynamic and boundary lubrication. Model predictions are compared with measurements of piston position using gap sensors in a single-cylinder engine and the comparison between theory and measurement shows remarkable agreement.
Technical Paper

Engine Experiments on the Effects of Design and Operational Parameters on Piston Secondary Motion and Piston Slap

1994-03-01
940695
Experiments were done to quantify the dynamic motion of the piston and oil-film during piston impact on the cylinder bore, commonly known as “piston slap.” Parameters measured include engine block vibration, piston-skirt to liner separation, oil-film thickness between the piston and liner, and other engine operating conditions. Experimental parametric studies were performed covering the following: engine operating parameters - spark timing, liner temperature, oil-film thickness, oil type, and engine speed; and engine design parameters - piston-skirt surface waviness, piston-skirt/cylinder-liner clearance, and wrist-pin offset. Two dynamic modes of piston-motion-induced vibration were observed, and effects of changes in engine operating and design parameters were investigated for both types of slap. It was evident that engine design parameters have stronger effects on piston slap intensity, with piston-skirt/liner clearance and wrist-pin offset being the dominant parameters.
Technical Paper

The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in SI Engines

1994-03-01
940306
To understand the effects of crevices on the engine-out hydrocarbon emissions, a series of engine experiments was carried out with different piston crevice volumes and with simulated head gasket crevices. The engine-out HC level was found to be modestly sensitive to the piston crevice size in both the warmed-up and the cold engines, but more sensitive to the crevice volume in the head gasket region. A substantial decrease in HC in the cold-to-warm-up engine transition was observed and is attributed mostly to the change in port oxidation.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Novel Experiment on In-Cylinder Desorption of Fuel from the Oil Layer

1994-10-01
941963
A technique has been developed to measure the desorption and subsequent oxidation of fuel in the oil layer by spiking the oil with liquid fuel and firing the engine on gaseous fuel or motoring with air. Experiments suggest that fuel desorption is not diffusion limited above 50 °C and indicated that approximately two to four percent of the cylinder oil layer is fresh oil from the sump. The increase in hydrocarbon emissions is of the order of 100 ppmC1 per 1% liquid fuel introduced into the fresh oil in a methane fired engine at mid-speed and light load conditions. Calculations indicate that fuel desorbing from oil is much more likely to produce hydrocarbon emissions than fuel emerging from crevices.
X